Prospects for EeV tau-neutrino physics with in-ice radio detectors

Christian Glaser, Daniel Garcia Fernandez and Anna Nelles

based on Phys. Rev. D **102** 083011 (2020), and PoS(ICRC2021)1231

Detection principle of Askaryan radio detectors

- Askaryan effect: Time varying negative charge excess in the shower front
- Cherenkov-like time compression effect
- In ice: arccos(1/n) = 56 deg

shower = radio signal

Experimental Landscape

ARIANNA test bed

12 shallow stations at Moore's Bay + South Pole

ARA

5x 200m deep stations at South Pole

Radio technology developed and verified; hardware proven reliable

RNO-G

now

- 35 detector stations in Greenland
- first deployment summer 2021

ARIANNA-200 (proposed)

 200 shallow detector stations at Moore's Bay

IceCube-Gen2

- 300+ detector stations at South Pole
- hybrid array of deep and shallow stations

Sensitivity of Radio Detectors

- In-ice radio detectors provide unprecedented sensitivity to EeV (10¹⁸ eV) neutrinos
- Discovery-size detectors underway
 - RNO-G in Greenland (under construction, see e.g. PoS(ICRC2021)1058)
 - ARIANNA-200 (proposed, see e.g. PoS(ICRC2021)1190)
- Large scale detector planned for IceCube-Gen2 (see e.g. PoS(ICRC2021)1183)

Neutrino interactions at EeV energies

^{*:} v_e-CC interactions also provide flavor sensitivity due to the LPM effect, see PoS(ICRC2021)1055

Tau decay length

- At relevant energies for radio detection (E>10¹⁷ eV)
 - tau decay length several kilometers

Tau interaction channels

- Tau propagation simulated using PROPOSAL, integrated into NuRadioMC
- Only counting showers > 1PeV
- Relevant interaction channels
 - decay (into hadrons, electrons, pions)
 - photonuclear interactions
 - pair production
 - Bremsstrahlung

Energy losses of high-energy muon

- 1 EeV muon propagating through ice
- Simulated using PROPOSAL
- Stochastic energy losses > 10¹⁴ eV shown

Tau neutrino effective volume

- Generic array with 2km spacing and 200m deep receivers at the South Pole
- Secondary interaction of taus increase sensitivity by up to 40%
 - at low energies tau decay channel dominates
 - > 5x10¹⁷ eV: tau energy losses dominate
- At high energies, many first and a secondary interaction detected simultaneously
 - flavor sensitivity

Golden event signature

- Simultaneous detection of first and secondary interaction
- Clear signature for muon or tau neutrino CC interactions

Summary

- Radio emission from secondary interactions of leptons integrated into NuRadioMC
- Taus (and muons) generated in neutrino CC interactions
 - generate visible signals in radio neutrino detectors
 - increase number of observable events by up to 40%
 - provide flavor sensitivity
 - first and secondary interaction observed simultaneously in 25% (τ)/50% (μ) at 10¹⁹ eV for array at the South Pole with 200m deep receivers and 2km spacing
 - Also flavor sensitivity from v_e-CC interactions (see PoS(ICRC21)1055)
- NuRadioMC generalized to calculate radio signals in detector for any number of in-ice showers
 - study of arbitrary emission scenarios

see also Phys. Rev. D **102** 083011 (2020) PoS(ICRC2021)1231

UPPSALA

UNIVERSITET

Backup

Tau neutrino effective volume

- Generic array with 1.25km spacing and 100m deep receivers in Greenland
- Secondary interaction of taus increase sensitivity by up to 25%
 - at low energies tau decay channel dominates
 - > 5x10¹⁷ eV: tau energy losses dominate
- At high energies, many first and a secondary interaction detected simultaneously
 - flavor sensitivity

Muon interaction channels

- Only counting showers > 1PeV
- Relevant interaction channels
 - pair production
 - Bremsstrahlung
 - photonuclear itnteractions

Muon neutrino effective volume

- Generic array with 2km spacing and 200m deep receivers at the South Pole
- Secondary interaction of muons increase sensitivity by up to 40%
- At high energies, first and a secondary interaction detected simultaneously

Atmospheric Muons

- High energy muons created in cosmic ray interactions induce in-ice showers
- Potential background, event rate uncertain due to flux uncertainties
- Using GSF cosmic ray model + SIBYLL2.3c -> 0.4 events/year for Gen2-radio (#1183)
- Also opportunity: Measurement of high-energy muon production

